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Abstract

Liquid–vapor pulsating flow in a vertically placed U-shaped miniature tube is investigated numerically. The two

sealed ends of the U-shaped tube are the evaporator sections and the condenser section is located in the middle of the

tube. The governing equations, obtained by analyzing the conservation of mass, momentum, and energy of the liquid

and vapor plugs, are nondimensionalized and the pulsating flow is described by five nondimensional parameters. The

numerical solution is obtained by employing an implicit scheme. The effects of various nondimensional parameters on

the performance of the pulsating heat pipe were investigated. The empirical correlations of the amplitude and circular

frequency of oscillation were also obtained. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The pulsating liquid–vapor flow in a miniature tube

can find its application in pulsating heat pipes (PHPs),

which is a very effective heat transfer device that can be

utilized to transfer large amount of heat [1]. The inner

diameter of the PHPs must be sufficiently small so that

the vapor plugs can be formed in the tube by growth of

the vapor bubbles. The unique feature of PHPs is that

there is no wick structure to return the condensate to the

evaporator section, and therefore there is no counter

current flow between the liquid and vapor. Applications

of pulsating heat pipes are found in a wide range of

practical problems including electronics cooling [2,3].

Miyazaki and Akachi [4] presented experimental in-

vestigation of heat transfer characteristics of a looped

capillary heat pipe and found that heat transfer limita-

tions that usually exist in the traditional heat pipes are

not encountered in the PHP. The test results suggested

that pressure oscillation and the oscillatory flow excite

each other. A simple analytical model of self-excited

oscillation was proposed based on such oscillating fea-

tures. Miyazaki and Akachi [6] derived the wave equa-

tion for pressure oscillation in an oscillating heat pipe

based on self-excited oscillation, in which the reciprocal

excitation between the pressure oscillation and void

fraction is assumed. A closed form solution of wave

propagation velocity was obtained by solving the wave

equation. Miyazaki and Arikawa [5] presented experi-

mental results on the oscillatory flow in the oscillating

heat pipe and the measured wave velocity fairly agreed

with the prediction of Miyazaki and Akachi [6].

Lee et al. [7] reported that the oscillation of bubbles is

caused by nucleate boiling and vapor oscillation, and

departure of small bubbles is considered as the repre-

sentative flow pattern at the evaporator and adiabatic

sections, respectively. Hosoda et al. [8] investigated

propagation phenomena of vapor plugs in a meandering

closed loop heat transport device. They observed a sim-

ple flow pattern appearing at high liquid volume frac-

tions. At such a condition, only two vapor plugs exist

separately in adjacent turns, and one of them starts to

shrink when the other starts to grow. A simplified nu-

merical solution was also performed with several major

assumptions including neglecting liquid film which may

exist between the tube wall and a vapor plug. Thermal

modeling of vertically placed unlooped and looped PHP

with three heating sections and two cooling sections was

presented by Shafii et al. [9]. The dimensional governing
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equations were solved using an explicit scheme. They

concluded that the number of vapor plugs is reduced to

the number of heating section no matter how many

vapor slugs were initially in the PHP. Zhang and Faghri

[10] analyzed a liquid–vapor pulsating flow with thin film

evaporation and condensation in a miniature channel

with an open end.

Shafii et al.’s [9] results indicated that the perfor-

mance of the unlooped PHP with two turns are sym-

metric, i.e., the first and the third vapor plugs have the

same pressures and temperatures upon steady oscillation

was established. The PHP with two turns can be mod-

eled as two U-shaped channels. The objective of the

present study is to analyze the liquid–vapor pulsating

flow in a U-shaped miniature tube. The governing

equations are first nondimensionalized and the param-

eters of the system are reduced to several dimensionless

numbers. The nondimensional governing equations are

then solved numerically and the empirical correlations

of amplitude and angular frequency of oscillation will be

presented.

2. Physical model

A schematic of the U-shaped tube is shown in

Fig. 1. A miniature tube with diameter of d and length

2L is bent into a U-shaped tube with the two ends

sealed. The two evaporator sections are near two

closed ends, and each of them has a length of Lh. The
condenser section with a length of 2Lc is located at the

bottom of the U-shaped tube. The wall temperatures

at the heating and cooling sections are Te and Tc,
respectively. A liquid slug with length 2Lp is located at
the bottom of the U-shaped tube. The location of the

liquid slug is represented by displacement, xp, which is
zero when the liquid slug is exactly in the middle of

the U-shaped miniature tube. When the liquid slug

Nomenclature

A dimensionless amplitude of pressure oscillation

Ac cross-sectional area of the tube, m2

B dimensionless amplitude of displacement

C integration constant

cp specific heat at constant pressure, J/kg K

cv specific heat at constant volume, J/kg K

d diameter of the heat pipe, m

h heat transfer coefficient, W=m
2
K

H dimensionless heat transfer coefficient

L length, m

M dimensionless mass of vapor plugs

mv mass of vapor plugs, kg

P dimensionless vapor pressure

pv vapor pressure, Pa

} dimensionless parameter defined by Eq. (33)

R gas constant, J/kg K

t time, s

T temperature, K

xp displacement of the liquid slug, m

Xp dimensionless displacement of the liquid slug

Greek symbols

c ratio of specific heat

h dimensionless temperature

H dimensionless temperature

difference

me effective viscosity, m2=s
q density, kg=m

3

s dimensionless time

sp shear stress, N=m
2

x dimensionless angular frequency

x0 dimensionless inherent angular

frequency

Subscripts

1 left vapor plug

2 right vapor plug

c condenser

e evaporator

h heating

‘ liquid

p plug

v vapor

Fig. 1. U-shaped miniature tube.
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shifts to the right side, the displacement is positive.

When the liquid slug shifts to the left, the displace-

ment is negative.

Suppose the initial value of xp0 is greater than zero,
part of the vapor plug in the left side of the heat pipe is

in contact with the condenser section, and condensation

occurring in the left vapor plug will result in a decrease

in the pressure of the left vapor plug, pv1. On the other
hand, part of the right evaporator is in contact with the

liquid slug and boiling may occur at the contact area of

the right evaporator and liquid slug, which causes in-

creasing vapor pressure of the right vapor plug, pv2. The
liquid plug will be pushed back to the left side due to the

pressure difference between the two vapor plugs, Dp ¼
pv1 � pv2 < 0. When xp becomes zero, there is no evap-
oration or condensation in two vapor plugs, but the

liquid slug keeps moving due to its inertia. When part of

the liquid slug enters the left evaporator, part of the

right vapor plug will be in contact with the condenser.

At this point, the boiling in the left vapor plug and

condensation in the right plug will change the sign of Dp,
and this will result in motion of liquid slug to the right

side. The oscillation of the liquid slug can be maintained

by alternative boiling and condensation in the two vapor

plugs.

2.1. Governing equations

The momentum equation for the liquid slug in Fig. 1

can be expressed as

AcLpq‘

d2xp
dt2

¼ ðpv1 � pv2ÞAc � 2q‘gAcxp � pdLpsp; ð1Þ

where Ac ¼ 1
4
pd2 is the cross-sectional area of the tube.

Eq. (1) can be rearranged as

d2xp
dt2

þ 32me
d2

dxp
dt

þ 2g
Lp

xp ¼
Dp

q‘Lp
; ð2Þ

where me is the effective kinetic viscosity of the liquid.
The energy equation of the vapor plugs is obtained

by applying the first law of thermodynamics to each

plug

d mv1cvTv1ð Þ
dt

¼ cpTv1
dmv1

dt
� pv

p
4
d2
dxp
dt

; ð3Þ

d mv2cvTv2ð Þ
dt

¼ cpTv2
dmv2

dt
þ pv

p
4
d2
dxp
dt

: ð4Þ

Eqs. (3) and (4) can be rearranged as

mv1cv
dTv1
dt

¼ RTv1
dmv1

dt
� pv

p
4
d2
dxp
dt

; ð5Þ

mv2cv
dTv2
dt

¼ RTv2
dmv2

dt
þ pv

p
4
d2
dxp
dt

: ð6Þ

It is assumed that the behavior of vapor plugs in

the two evaporators can be modeled using ideal gas

law

pv1ðLh þ xpÞ
p
4
d2 ¼ mv1RgTv1; ð7Þ

pv2ðLh � xpÞ
p
4
d2 ¼ mv2RgTv2: ð8Þ

Differentiating Eq. (7) with respect to time gives

p
4
d2ðLh þ xpÞ

dpv1
dt

þ pv1
p
4
d2
dxp
dt

¼ mv1R
dTv
dt

þ RTv
dmv1

dt
ð9Þ

and substituting Eq. (5) into Eq. (9)

RTv1
dmv1

dt
¼ p
4
d2

cv
cp

ðLh þ xpÞ
dpv1
dt

þ pv1
p
4
d2
dxp
dt

: ð10Þ

Substituting Eq. (7) into Eq. (10), a differential equation

of mv1 is obtained:

1

mv1

dmv1

dt
¼ 1

c
1

pv1

dpv1
dt

þ 1

Lh þ xp

dxp
dt

; ð11Þ

where c ¼ cp=cv is the specific heat ratio of the vapor.
Integrating Eq. (11), a closed form of the mass of the

left vapor plug is obtained:

mv1 ¼ C1p
1=c
v1 ðLh þ xpÞ: ð12Þ

Substituting Eq. (12) into Eq. (7) yields the temperature

of the left vapor plug

Tv1 ¼
pd2

4C1R
pðc�1Þ=cv1 : ð13Þ

Similarly, the mass and temperature and the right vapor

plug can be expressed as

mv2 ¼ C2p
1=c
v2 ðLh � xpÞ; ð14Þ

Tv2 ¼
pd2

4C2R
pðc�1Þ=cv2 ; ð15Þ

where C1 in Eqs. (12) and (13) and C2 in Eqs. (14) and
(15) are the integration constants. Since the structure of

the U-shaped heat pipe is symmetric, these two inte-

gration constants are the same, i.e., C1 ¼ C2 ¼ C.
The masses of the vapor plugs increase due to

evaporation and decrease due to condensation

dmv1

dt
¼ �hcpdxpðTv1 � TcÞ=hfg; xp > 0;

�hepdðLh þ xpÞðTe � Tv1Þ=hfg; xp < 0;

�
ð16Þ

dmv2

dt
¼ hepdðLh � xpÞðTe � Tv2Þ=hfg; xp > 0;

hcpdxpðTv2 � TcÞ=hfg; xp < 0:

�
ð17Þ
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2.2. Nondimensional governing equations

In order to nondimensionalize the governing equa-

tions, a reference state of the U-shaped miniature tube

needs to be specified. At this reference state, the pressure

and temperature of both vapor plugs are pv1 ¼ pv2
¼ p0; Tv1 ¼ Tv2 ¼ T0. The displacement of liquid plug at
reference state is xp ¼ xp0. According to Eqs. (13) and
(15), the constants C1 and C2 are

C1 ¼ C2 ¼
pd2

4RT0
pðc�1Þ=c0 : ð18Þ

The masses of the two vapor plugs at the reference

state are

mv10 ¼
pd2

4RT0
p0ðLh þ xpÞ; ð19Þ

mv20 ¼
pd2

4RT0
p0ðLh � xpÞ: ð20Þ

The average mass of two vapor plugs is

m0 ¼
mv10 þ mv20

2
¼ pd2

4RT0
p0Lh: ð21Þ

Substituting Eqs. (18) and (21) into Eqs. (12)–(15), one

gets

mv1

m0

¼ pv1
p0

� �1=c Lh þ xp
Lh

; ð22Þ

Tv1
T0

¼ pv1
p0

� �ðc�1Þ=c

; ð23Þ

mv2

m0

¼ pv2
p0

� �1=c Lh � xp
Lh

; ð24Þ

Tv2
T0

¼ pv2
p0

� �ðc�1Þ=c

: ð25Þ

By defining

h1 ¼
Tv1
T0

; h2 ¼
Tv2
T0

; P1 ¼
pv1
p0

;

P2 ¼
pv2
p0

; M1 ¼
mv1

m0

; M2 ¼
mv2

m0

; Xp ¼
xp
Lh

; ð26Þ

Eqs. (22)–(25) become

M1 ¼ P 1=c1 ð1þ XpÞ; ð27Þ

h1 ¼ P ðc�1Þ=c
1 ; ð28Þ

M2 ¼ P 1=c2 ð1� XpÞ; ð29Þ

h2 ¼ P ðc�1Þ=c
2 : ð30Þ

Introducing the nondimensional variables to Eq. (2)

and defining dimensionless time as

s ¼ met
d2

: ð31Þ

Eq. (2) becomes

d2Xp

ds2
þ 32

dXp

ds
þ x2

0Xp ¼ }ðP1 � P2Þ; ð32Þ

where x0 and } are two dimensionless parameters de-

fined as

x2
0 ¼

2gd4

Lpm2e
; } ¼ p0d4

q‘LpLhm2e
: ð33Þ

Substituting Eqs. (26) and (31) into Eqs. (16) and (17),

one obtains

dM1

ds
¼

�HcXpðh1 � hcÞ; Xp > 0;

�Heð1þ XpÞðhe � h1Þ; Xp < 0;

�
ð34Þ

dM2

ds
¼

Heð1� XpÞðhe � h2Þ; Xp > 0;

HcXpðh2 � hcÞ; Xp < 0;

�
ð35Þ

where

Hc ¼
4hcRT 20 d
p0hfgme

; He ¼
4heRT 20 d
p0hfgme

;

he ¼
Te
T0

; hc ¼
Tc
T0

:

ð36Þ

The system is described by six nondimensional pa-

rameters defined in Eq. (33) and (36). If the reference

temperature is chosen to be the average of Te and Tc, the
dimensionless temperature of heating and cooling sec-

tions is

he ¼ 1þ H; hc ¼ 1� H; ð37Þ

where

H ¼ Te � Tc
Te þ Tc

: ð38Þ

At this point, the number of dimensionless param-

eters that describe the system are further reduced to

five.

2.3. Initial conditions

The reference state of the U-shaped miniature tube is

chosen to be the initial state of the system. The initial

conditions of the system are:

Xp ¼ X0; s ¼ 0; ð39Þ

P1 ¼ P2 ¼ 1; s ¼ 0; ð40Þ

h1 ¼ h2 ¼ 1; s ¼ 0; ð41Þ

M1 ¼ 1þ X0; M2 ¼ 1� X0; s ¼ 0: ð42Þ
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3. Numerical solution

The oscillatory flow in a U-shaped miniature tube is

described by Eqs. (27)–(30), (32) and (34), (35) with

initial conditions specified by Eqs. (39)–(42). The pa-

rameters that define the problems are x0; };Hc;He;H
and X0:

Note that Eq. (32) is an ordinary differential equation

of forced vibration. If the vapor pressure difference be-

tween the two vapor plugs is

DP ¼ A cosxs; ð43Þ
the solution of Eq. (32) is

Xp ¼ B0 e�16s cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 � 16

q
s

�
þ /0

�

þ }A cos xs � wð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 � x2ð Þ2 þ 1024x2

q ; ð44Þ

where B0 and /0 are constants determined by initial

conditions of the vibration. The phase difference be-

tween Xp and DP is

tanw ¼ 32x
x2
0 � x2

: ð45Þ

The first term of Eq. (44) accounts for the effect of

initial conditions of vibration. With increasing time, the

energy put into the system by the initial condition is

dissipated through damping force and the motion then

represents the response of the system to the pressure

difference described by Eq. (43). When time is suffi-

ciently long, Eq. (44) becomes

Xp ¼ B cosðxs � wÞ; ð46Þ

where

B ¼ }Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 � x2ð Þ2 þ 1024x2

q : ð47Þ

In reality, the amplitude and angular frequency are

unknown a priori and the pressure difference between

the two vapor plugs depends on heat transfer in two

vapor plugs. The amplitude and angular frequency of

pressure oscillation must be obtained by a numerical

solution.

The results of each time-step are obtained by solving

the dimensionless governing equations using an implicit

scheme. The numerical procedure for a particular time

step are outlined as follows:

1. Assume h1 and h2.
2. Solve for P1 and P2 from Eqs. (28) and (30).

3. Solve for Xp from Eq. (32).

4. Calculate the mass of the two vapor plugs, M1 and

M2, using Eqs. (34) and (35).

5. Calculate the nondimensional pressure of the two va-

por plugs, P1 and P2, from Eqs. (27) and (29).

6. Solve for h1 and h2 from Eqs. (28) and (30).

7. Compare h1 and h2 obtained in step 5 with the as-
sumed values in step 1. If the differences meet a toler-

ance go to the next step; otherwise, steps 2–5 are

repeated until a converged solution is obtained.

The time-step independent solution of the problem

can be obtained when time-step is Ds ¼ 10�5, which is

then used in all numerical simulations.

4. Results and discussion

Fig. 2(a) shows the comparison of the liquid slug

displacements obtained by the present model and the

model of Shafii et al. [9]. The results of Shafii et al.’s

model [9] was obtained by using the following parame-

ters: Lh ¼ 0:1 m, Lc ¼ 0:1 m, Lp ¼ 0:2 m, d ¼ 3:34 mm,
Te ¼ 123:4 �C, Tc ¼ 20 �C, and he ¼ hc ¼ 200 W=m

2
K.

The present results were obtained by using the corre-

sponding nondimensional parameters: x2
0 ¼ 1:2� 104;

} ¼ 1:2� 105; H ¼ 0:15, and He ¼ Hc ¼ 3000. It can be

seen that the results obtained by using the present model

agreed very well with Shafii et al.’s model [9]. Consider

the unique features of the present model: (1) The U-

shaped miniature tube was described by five dimen-

sionless parameters; (2) The closed form solutions of

vapor mass and vapor temperatures were obtained; (3)

An unconditional stable implicit scheme was employed

to solve the problem, the present model represents a

significant advancement over the existing models.

Fig. 2(b) shows the effect of dimensionless initial

displacement on the oscillatory flow in the U-shaped

miniature tube. The initial displacement has significant

effect on the first several periods of oscillation. After five

periods of oscillation, the amplitudes and angular

Fig. 2. Oscillation of the liquid slug: (a) comparison with Shafii

et al. (2000); (b) effect of intial displacement ðx2
0 ¼ 1:2� 104;

} ¼ 1:2� 105; H ¼ 0:15; He ¼ Hc ¼ 3000Þ.
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frequencies of oscillation for different initial displace-

ments are almost the same. On the other hand, the phase

of the oscillation is different for different initial dis-

placements. When the initial displacement is increased,

the oscillation of liquid plug is delayed.

Fig. 3 shows the variations of dimensionless temper-

ature, pressure, and mass with time. It is seen that the

phase difference between the temperatures in the two va-

por plugs is approximately p. The maximum temperature

of the vapor plug can exceed the heating wall temperature

of miniature tube due to compression of the vapor plug.

Thedifference between thephases of pressure in twovapor

plug is also about p. On the other hand, the mass of two
vapor plugs vary with same period as the displacement

and pressure but it is more like saw tooth wave.

Fig. 4 shows the effect of gravity on the oscillatory

flow in the U-shaped miniature tube. It can be seen that

the effect of gravity on the oscillation is not significant.

The amplitude of the displacement, temperature and

pressure of the vapor plugs are slightly increased when

gravity is neglected, which qualitatively agrees with

Eq. (47). The oscillation phase is advanced when gravity

is neglected. The effect of } on the oscillation in a PHP is
shown in Fig. 5. It can be seen that the effect of } on the
amplitude of oscillation is negligible, but the angular

frequency of the oscillation is increased by about 40%

when } is doubled.

The effect of H on the oscillatory flow in the minia-

ture tube is shown in Fig. 6. Fig. 6 shows that the am-

plitude of Xp increases with increasing H. The maximum
temperature increases and the minimum temperature

decreases with increasing H. The increase in maximum
temperature is larger than the decrease of the minimum

temperature which means that the average temperature

of the vapor plug increases with increasing H. As can be

Fig. 3. Dimensionless temperature, pressure and mass of the

vapor plugs ðx2
0 ¼ 1:2� 104; } ¼ 1:2� 105; H ¼ 0:15; He ¼

Hc ¼ 3000; X0 ¼ 0:5Þ.

Fig. 5. Effect of } on the pulsating flow ðx2
0 ¼ 1:2� 104; H ¼

0:15; He ¼ Hc ¼ 3000Þ.

Fig. 4. Effect of gravity on the pulsating flow ð} ¼ 1:2 �
105; H ¼ 0:15; He ¼ Hc ¼ 3000Þ.

Fig. 6. Effect of H on the pulsating flow ðx2
0 ¼ 1:2� 104; } ¼

1:2� 105; He ¼ Hc ¼ 3000Þ.
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seen from Fig. 6(c), the average pressure of the vapor

plug increases with increasing H which is very similar to

the trend of the temperature. The effect He and Hc on the

oscillatory flow is then investigated. Fig. 7 shows the

results for the cases in which the dimensionless heat

transfer coefficient at the heating and cooling sections

are the same, i.e. He ¼ Hc ¼ H . It can be seen that the
amplitude of oscillation slightly increase with increasing

heat transfer coefficients. The angular frequency of os-

cillation is however, decreased with increasing heat

transfer coefficients.

The effect of H on the amplitude of displacement,

B, at different heat transfer coefficients is investigated

and the results are partially illustrated in Fig. 8. It can

be seen that the amplitude is a monotonic function of

dimensionless temperature difference, and the slope

of the B–H curve decreases with increasing dimen-

sionless heat transfer coefficient. The amplitude of

the displacement can be correlated as function of H
and H

B ¼
X3
i¼1

X4
j¼1

bijðH � 10�3 � 3Þj�1ðH � 0:175Þi�1;

1000 < H < 5000; 0:05 < H < 0:25; ð48Þ

where

½bij� ¼
0:52801 0:013934 �0:81339� 10�2

2:60870 �0:13483 �0:22955� 10�1

�5:0681 �0:16342 0:62381� 10�2

2
64

0:31055� 10�2

0:68034� 10�2

�0:34886� 10�1

3
75 ð49Þ

and the maximum error that obtained by Eq. (48) is less

than 1%.

Similarly, the effect of H on the angular frequency, x,
at different heat transfer coefficients is investigated and

the results are partially illustrated in Fig. 9. The angular

frequency is a monotonic function of dimensionless

temperature difference and slope of the x–H curve in-

creases with increasing dimensionless heat transfer co-

efficients. The angular frequency of oscillation can be

correlated as

x ¼
X3
i¼1

X4
j¼1

uijðH � 10�3 � 3Þj�1ðH � 0:175Þi�1;

1000 < H < 5000; 0:05 < H < 0:25; ð50Þ

Fig. 9. Angular frequency of of the oscillation ðx2
0 ¼ 1:2� 104;

} ¼ 1:2� 105Þ.

Fig. 8. Amplitude of of the displacement ðx2
0 ¼ 1:2� 104; } ¼

1:2� 105Þ.

Fig. 7. Effect of dimensionless heat transfer coefficient on the

pulsating flow ðx2
0 ¼ 1:2� 104; } ¼ 1:2� 105; H ¼ 0:15Þ.
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where

½uij� ¼
729:72 0:13251 �0:96554 �0:024579
1074:1 114:44 �31:324 8:0407
3006:2 �71:904 �168:07 63:906

2
4

3
5
ð51Þ

and the maximum errors that obtained by Eq. (50) is less

than 0.5%.

5. Conclusion

Oscillatory flows in a U-shaped miniature tube are

investigated in the present study. The governing equa-

tions of the oscillatory flow were nondimenionalized and

the nondimensional parameters that describe the system

were reduced to five. The results show that the initial

displacement of the liquid slug has an insignificant effect

on the amplitude and angular frequency of the oscilla-

tion. The effect of gravity on the oscillatory flow is also

insignificant. The effect of dimensionless temperature

difference and heat transfer coefficient on the amplitude

and angular frequency were investigated. The correla-

tions of amplitude and angular frequency of oscillation

were obtained and the maximum errors were within 1%

and 0.5%, respectively.
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